Page 1/6

H7

Simulyzer-RT ADC-Card

Hardware version	V1.0
Documentation version:	1.0
Created:	(1.0) 11.12.2025
Order no.:	20.5006

Page 2 / 6

ΗZ

Safety instructions

To avoid damages to persons and devices the following safety instructions have to be noticed!

- Only qualified personnel are allowed to handle this device!
- Before any handling within the device the current supply has to be switched off!
- During operation the device have to be positioned, that enough air condition is supplied and no small parts can get into the ventilation slots.
- In case of any trouble the system has to be switched de-energized!
- The declared environmental conditions and max. voltage ranges have to be observed!
- To warranty the device remove all dust and dirt in periodically intervals.
- Make sure that the ventilation slots are unobstructed!

Intended use:

The Simulyzer-RT ADC card is designed exclusively for measuring and analyzing voltages in a Simulyzer RT test system. The ADC card's range of tasks extends to analog recording within the test system (see Areas of Application).

The device is only permitted to use for the intended use. Any other use results the deletion of the guarantee!

For questions and repair cases contact SesKion GmbH

Tel.: +49 (0)711/990 58 14 Fax: +49 (0)711/990 58 27 Email: info@seskion.de Internet: www.seskion.de

Page 3 / 6

ΗZ

Table of Contents

Table of Contents	3
1. Technical Data	4
2. Block diagram	4
3. Connectors	5
4. Interfaces and FPGA	5
5. Handling Card/Chassis	5
6 Measurement Accuracy	

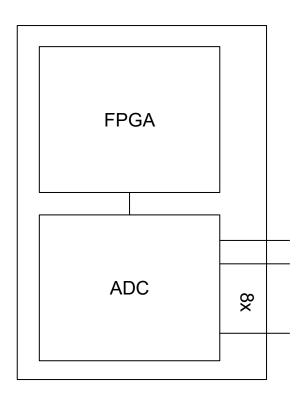
Page 4 / 6

ΗZ

1. Technical Data

• Current consumption: 12V / 0,8 A (without external consumers)

• Operating temperature: 0°C ... 40°C


• Rel. Humidity: Max. 85% not condensed

• Weight: 190g

• Dimensions: Single Eurocard, 4 U

Test conditions: Environmental temperature 20°C to 26°C						
Num	Evaluation	Symbol	typ.	min.	max.	description
1	Permitted voltage range	Usupp	12V	11.4V	12.6V	
2	Current consumption	I _{supp}	650mA	-	800mA	Without sensor supply

2. Block Diagram

Page 5 / 6

ΗZ

3. Connectors:

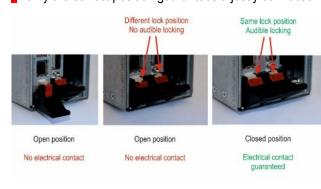
• For SPI, FAST-SO

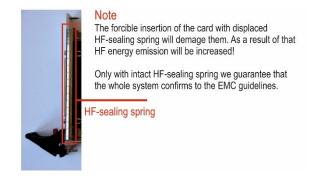
Connectors to bus:
 1 PCle Lane to CPU-1

Power supply I2C

Parallel to all cards for synchronization

• Connectors frontside: SMA female coaxial connector


4. Interfaces and FPGA:


- Xilinx® Zynq® UltraScale+ MPSoC Module ARM® dual-/quad-core Cortex™-A53 (64 bit, up to 1500 MHz)
- 8 x SMA female coaxial connector Voltage range -10V ... +10V (16bit with 120 Msps)

5. Handling Card/Chassis

Pay attention that the ejection lever of the plug-in card is arrested correctly.

Only the correct position guarantees a justly connection of the bus system and the power supply!

Page 6 / 6

ΗZ

6. Measurement Accuracy

6.1. Time base

Test conditions: Environmental temperature 20°C to 26°C						
Num	Evaluation	Symbol	Type	Max	Unit	Comment
1	Accuracy time base	Δf/f	±30	±50	ppm	-
2	Aging of time base	$\Delta f/f_A$	±5		ppm/year	-
3	Temperature drift of time base	$\Delta f/f_T$	±0.3	±0.7	ppm/°C	-

6.2. Measurement of the supply voltage

Test conditions: Environmental temperature 20°C to 26°C							
Num	Evaluation	Symbol	Type	Max	Unit	Comment	
4	Accuracy of the measured voltage	U _{mea}	±0.1	±0.1	% of scfin. 20V	Range -10V 10V	
5	Aging of the measured voltage	U _{A-mea}		±0.1	%/year	Range -10V 10V	
6	Resolution of the measured voltages		16		Bit	0 65535	
	-		0.335698		mV/LSB		