

SENT-Simulyzer (Originalbetriebsanleitung)

SESKION

Betriebsanleitung SENT-Simulyzer

Schutzvermerk

© Seskion GmbH 2025

Alle Rechte vorbehalten, auch bezüglich jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Verbindlichkeit

Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne zu verstehen. Änderungen im Inhalt der Dokumentation und Liefermöglichkeiten der Produkte sind vorbehalten.

1	Zι	u dies	ser Betriebsanleitung	5
	1.1	Αι	usgaben dieser Dokumentation	5
	1.2	Ge	eltungsbereich	5
	1.3	W	eiterführende Dokumentationen	5
	1.4	Κι	ındenfeedback	5
	1.5	Da	arstellung von Informationen	5
	1.	.5.1	Sicherheitshinweise	5
	1.	.5.2	Warnhinweise	5
	1.	.5.3	Abbildungen und Zeichnungen	6
	1.	.5.4	Textauszeichnung	6
	1.	.5.5	Abkürzungen	7
2	Si	icherl	neitsbestimmungen	8
	2.1	Gr	undsätze	8
	2.2	Ве	estimmungsgemäße Verwendung	8
	2.3	Ni	cht bestimmungsgemäße Verwendung	8
	2.4	Si	cherheitshinweise	8
	2.5	Qı	ualifikation des Personals	8
	2.6	Вє	triebssicherheit	8
3	G	ewäh	rleistung	9
4	Li	ieferu	mfang und Identifikation	9
	4.1	Lie	eferumfang	9
5	Ül	bersi	cht	10
	5.1	Fι	nktionsbeschreibung	10
	5.2	Sc	hnittstellen	11
	5.	.2.1	SD-Karten-Einschub	11
	5.	.2.2	USB	11
	5.	.2.3	Externe Spannungsversorgung	11
	5.	2.4	CAN	11
	5.	.2.5	Sensor/ECU IO	12
	5.	2.6	Analog/Digital IO	13
	5.	.2.7	Blockschaltbild SENT Spannungsversorgung und SENT Daten	14
	5.3	Ar	nzeigeelemente	15
	5.4	Вє	triebsarten	16
	5.	.4.1	ECU-Mode	16
	5.	.4.2	Sensor-Mode	17
	5.	.4.3	Passiv-Mode	18

6	6 Technische Daten				
6.	1	Produkt	19		
6.	2	Umgebungsbedingungen	19		
7	Me	essgenauigkeiten	20		
8	Tra	nsport und Lagerung	21		
8.	1	Transport	21		
8.	2	Lagerung	21		
9	Ins	tallation und Inbetriebnahme	22		
9.	1	Installation	22		
9.	2	Inbetriebnahme	22		
12	F	Hilfe bei Störungen	23		
13	E	Entsorgung	24		
13	3.1	Recycling	24		
13	3.2	Wesentliche Bestandteile	24		
13	3.3	Verpackung	24		
13	3.4	Entsorgung durch den Hersteller	24		
14	A	Anhang	25		
14	1.1	Service-Adresse	25		
14	1.2	Ersatz- und Verschleißteile	25		
14	1.3	Konformitätserklärung	25		

1 Zu dieser Betriebsanleitung

1.1 Ausgaben dieser Dokumentation

Ausgabe	Stand	Bemerkung		
01	2025-03	Erstausgabe		

Tab. 1 Ausgabenhistorie

1.2 Geltungsbereich

Diese Dokumentation gilt für alle Simulyzer ab Version 2.0, deren Typenschlüssel folgendermaßen beginnt:

Type SENT

1.3 Weiterführende Dokumentationen

Weiterführende Dokumentationen sind auf unserer Homepage: <u>www.seskion.de</u> in der jeweiligen Produktauswahl zu finden.

1.4 Kundenfeedback

Anregungen, Wünsche oder Verbesserungen von unseren Kunden haben bei uns einen hohen Stellenwert.

Anmerkungen zu den Dokumentationen können direkt im PDF-Dokument eingefügt und uns per E-Mail an sales@seskion.de zugesendet werden.

1.5 Darstellung von Informationen

1.5.1 Sicherheitshinweise

Die Sicherheitshinweise in dieser Betriebsanleitung nennen Gefährdungen, die im Umgang mit dem Produkt auftreten können. Sie werden ohne Schriftauszeichnung als Fließtext ausgeführt.

1.5.2 Warnhinweise

Die Warnhinweise in dieser Betriebsanleitung beinhalten bestimmte Signalwörter (Gefahr, Warnung, Vorsicht, Hinweis) und eine Signalgrafik.

Das Signalwort soll die Aufmerksamkeit auf den Sicherheitshinweis lenken und bezeichnet die Schwere der Gefährdung oder die Gefahr von Sachschaden.

Die Signalgrafik (Warndreieck mit Ausrufezeichen), welche den Signalwörtern Gefahr, Warnung und Vorsicht vorangestellt wird, weist auf Gefährdungen für Personen hin.

Bei Nichtbeachtung dieses Warnhinweises können mittelschwere oder leichte Körperverletzung eintreten.

Das Signalwort Hinweis auf blauem Grund weist auf die Gefahr von Sachschaden hin.

ACHTUNG

Bei Nichtbeachtung dieses Warnhinweises können Sachschäden eintreten.

1.5.3 Abbildungen und Zeichnungen

Die Abbildungen und Zeichnungen dieser Betriebsanleitung dienen zur Unterstützung und Verdeutlichung der Texte.

Einige dieser Abbildungen und Zeichnungen können Details und/oder Konfigurationen enthalten, die am Produkt nicht vorhanden und/oder abweichend ausgeführt sind. Zudem können Komponenten enthalten sein, welche nicht im Lieferumfang des Produktes enthalten sind.

1.5.4 Textauszeichnung

Zur verständlichen Darstellung der Textinformation werden die folgenden Textauszeichnungen verwendet:

Hinweis auf weiterführende Dokumentation

Dieser Hinweis gibt Ihnen wichtige Informationen, auf die Sie achten sollten.

- Auflistungen erster Ebene werden mit dem ausgefüllten Listenpunkt ausgezeichnet
 - Auflistungen zweiter Ebene werden mit dem leeren Listenpunkt ausgezeichnet

Handlungsanweisungen

- 1. Erster Schritt einer Handlungsanweisung
- 2. Zweiter Schritt einer Handlungsanweisung
 - → Resultat des zweiten Schrittes
- 3. Dritter Schritt einer Handlungsanweisung

Hinweis: Dies ist ein Hinweis zu Handlungsschritt drei.

Die Reihenfolge von Handlungsanweisungen ist zu beachten!

1.5.5 Abkürzungen

In dieser Dokumentation werden Abkürzungen verwendet, deren Bedeutung Sie der nachstehenden Tabelle entnehmen können

Abkürzung	Bedeutung
API	Application Programming Interfaces
CAN	Controller Area Network
CRC	Cyclic Redundancy Check
ECU	Electronic Control Unit
FPGA	Field Programmable Gate Array
GND	Ground
NC	Not Connected

Tab. 2 Abkürzungen

SESKION

Betriebsanleitung SENT-Simulyzer

2 Sicherheitsbestimmungen

2.1 Grundsätze

Der Simulyzer darf ausschließlich in einwandfreiem technischem Zustand genutzt werden.

ACHTUNG

Sollten sichtbare Beschädigungen an den Schnittstellen und/oder am Gehäuse vorhanden sein, ist die Nutzung untersagt!

2.2 Bestimmungsgemäße Verwendung

Der Simulyzer ist ausschließlich für den professionellen Einsatz bestimmt.

Die bestimmungsgemäße Verwendung des Simulyzers ist das schnelle und unkomplizierte Auslesen von Sensordaten des SENT-Busses und Peripheriegeräten sowie das Übermitteln von Simulationsdaten an Steuergeräte.

2.3 Nicht bestimmungsgemäße Verwendung

Folgende Fehlanwendungen sind untersagt und daraus resultierende Schäden von der Gewährleistung ausgeschlossen:

- Betrieb außerhalb der bestimmungsgemäßen Verwendung
- Betrieb außerhalb der vorgeschriebenen technischen Daten, siehe Kap. 6
- · Betrieb in Spritzwasserumgebung

2.4 Sicherheitshinweise

Folgende Sicherheitshinweise sind beim Umgang mit dem Simulyzer zu beachten:

- Platzierung ausschließlich auf ebener Fläche, ausreichend entfernt von Absturzkanten oder ausreichend gegen Absturz/Herabfallen gesichert.
- Keinen Betrieb unter Einfluss von Spritzwasser.
- Betrieb in Fahrzeugen nur ausreichend gesichert gegen Beschleunigung, Erschütterung und Herabfallen.

2.5 Qualifikation des Personals

Der Simulyzer ist für Personen aus dem Umfeld der Entwicklung und Erprobung konzipiert, dies sind unter anderem Programmierer, Systemtester, Systemarchitekten, Elektroniker und weitere.

2.6 Betriebssicherheit

Jedes Arbeitsmittel muss gemäß der Betriebssicherheitsverordnung (BetrSichV) und als elektrisches Betriebsmittel nach der DGUV-Vorschrift 3 von einer Elektrofachkraft oder unter deren Aufsicht in regelmäßigen Abständen geprüft werden.

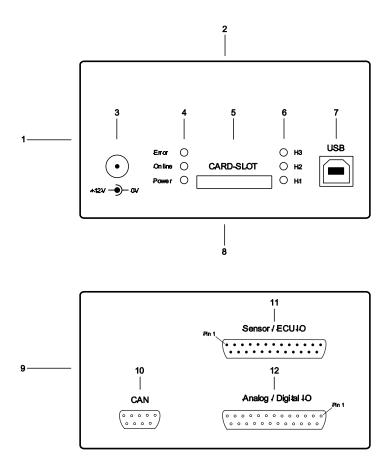
Dies schließt das im Lieferumfang enthaltene Netzteil ein.

3 Gewährleistung

Der Anspruch auf Gewährleistung erlischt bei nicht bestimmungsgemäßer Verwendung und/oder unsachgemäßer Handhabung. Der Anspruch auf Gewährleistung erlischt ebenfalls, wenn der Simulyzer eigenständig geöffnet wird oder Öffnungsversuche unternommen werden.

4 Lieferumfang und Identifikation

Betriebsanleitung SENT-Simulyzer


4.1 Lieferumfang

Der Lieferumfang des Simulyzers besteht aus dem Simulyzer als Produkt und folgendem Zubehör:

- 1x Netzteil
- 1x USB-Kabel
- 2x SUB-D Gegenstecker

5 Übersicht

Abb. 1 Übersicht

1 - Vorderseite
2 - Oberseite
3 - Externe Spannungsversorgung
4 - Statusanzeige 1
5 - SD-Karten-Einschub
6 - Statusanzeige 2
7 - USB
8 - Unterseite
9 - Rückseite
10 - CAN
11 - Sensor/ECU IO
12 - Analog/Digital IO

5.1 Funktionsbeschreibung

Der Simulyzer übernimmt die Simulation und/oder Analyse von Daten aus dem SENT-Bus (siehe Spezifikation SAE J2716).

Analysierte Daten können mithilfe der entsprechenden Softwarelösung von Seskion visualisiert werden. Alternativ stellt Seskion eine API bereit, die Nutzer eigenständig an ihr System anbinden können.

5.2 Schnittstellen

5.2.1 SD-Karten-Einschub

Der SD-Karten-Einschub dient zur Erweiterung des Speicherplatzes zur optionalen Aufzeichnung von Messdaten durch Verwendung einer SD-Karte.

Die SD-Karte ist nicht im Lieferumfang enthalten.

5.2.2 USB

Der USB 2.0-Anschluss erfüllt zwei Funktionen. Einerseits dient er zur Konfiguration des Simulyzers und andererseits zur Übertragung der Messdaten auf einen PC.

5.2.3 Externe Spannungsversorgung

Dieser Anschluss dient zum Anschluss einer externen Spannungsversorgung an den Simulyzer.

5.2.4 CAN

Das CAN-Interface ist standardmäßig vorhanden, muss jedoch mit einer Lizenz freigeschaltet werden. Diese ist bei Seskion zu erwerben.

Das CAN-Interface ermöglicht die Anbindung des Simulyzers an eine beliebige CAN-Bus-Schnittstelle.

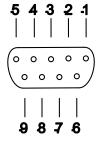


Abb. 2 CAN-Interface Pinbelegung

Pin	Belegung
1	NC
2	CAN-Low
3	GND
4	NC
5	NC
6	GND
7	CAN-High
8	NC
9	NC

Tab. 3 CAN-Interface Pinbelegung

Der Abschluss-Widerstand zwischen CAN-High und CAN-Low ist nicht verbaut.

5.2.5 Sensor/ECU IO

An der Schnittstelle Sensor/ECU IO werden Daten mit dem SENT Sensorbus ausgetauscht.

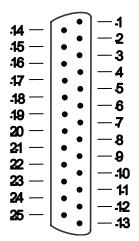


Abb. 3 Sensor/ECU IO - Pinbelegung

Pin	Belegung
1	VDD1 / ECU 1
2	SENT_DATA 1
3	VDD-Sensor 1
4	Not Connected
5	Not Connected
6	Not Connected
7	VDD2 / ECU2
8	SENT_DATA 2
9	VDD-Sensor 1
10	Not Connected
11	Not Connected
12	Not Connected
13	Not Connected
14	GND
15	GND
16	GND
17	GND
18	Not Connected
19	Not Connected
20	Not Connected
21	Do not connect
22	GND
23	Do not connect
24	GND
25	+12 V

Tab. 4 Sensor/ECU IO - Pinbelegung

5.2.6 Analog/Digital IO

An der Schnittstelle Analog/Digital IO werden allgemeine In-/Output-Signale ausgetauscht.

Abb. 4 Analog/Digital IO - Pinbelegung

Pin	Belegung	Charakteristik
1	DAC_1 / Analog Input 1	-10 V+10 V
2	DAC _2 / Analog Input 2	-10 V+10 V
3	DAC _3 / Analog Input 3	-10 V+10 V
4	DAC _4 / Analog Input 4	-10 V+10 V
5	GND	-
6	DIGE_1 / Digital Input 1	0 V3,3 V oder 5 V (VDDD)
7	DIGE_2 / Digital Input 2	0 V3,3 V oder 5 V (VDDD)
8	DIGE_3 / Digital Input 3	0 V3,3 V oder 5 V (VDDD)
9	DIGE_4 / Digital Input 4	0 V3,3 V oder 5 V (VDDD)
10	DIGE_5 / Digital Input 5	0 V3,3 V oder 5 V (VDDD)
11	DIGE_6 / Digital Input 6	0 V3,3 V oder 5 V (VDDD)
12	DIGA_1 / Digital Output 1	3,3 V oder 5 V (VDDD)
13	DIGA_2 / Digital Output 2	3,3 V oder 5 V (VDDD)
14	DIGA_3 / Digital Output 3	3,3 V oder 5 V (VDDD)
15	DIGA_4 / Digital Output 4	3,3 V oder 5 V (VDDD)
16	DIGA_5 / Digital Output 5	3,3 V oder 5 V (VDDD)
17	DIGA_6 / Digital Output 6	3,3 V oder 5 V (VDDD)
18	VDDDD	3,3 V oder 5 V
19	VDDDA	Not Connected
20	AN_OUT1 / Analog Output 1	0 V+5 V
21	AN_OUT2 / Analog Output 2	0 V+5 V
22	AN_OUT3 / Analog Output 3	0 V+5 V
23	AN_OUT4 / Analog Output 4	0 V+5 V
24	GND	-
25	GND	-

Tab. 5 Analog/Digital IO - Pinbelegung

5.2.7 Blockschaltbild SENT Spannungsversorgung und SENT Daten

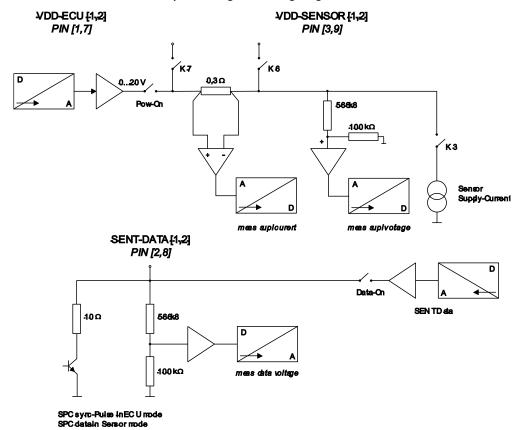


Abb. 5 Blockschaltbild SENT

Mode	К3	K6	K 7	Pow-On	Data-Off	
Passive	off	on	on	off	off	
ECU	off	on	off	on/off	off	
Sensor	on	off	on	off	on if not	
Simulation	on	off	off	on/off	SPC mode	

Tab. 6 Analog/Digital IO - Pinbelegung

5.3 Anzeigeelemente

Die Anzeigeelemente befinden sich auf der Vorderseite des Produkts.

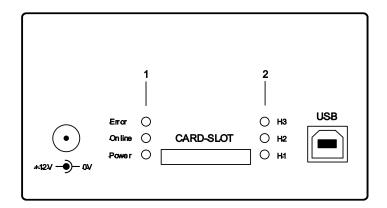


Abb. 6 Anzeigeelemente

1 - Statusanzeige 1

2 - Statusanzeige 2

Bezeichnung	Farbe	Status	Bezeichnung	Farbe	Status
Error	rot	leuchtet -> Fehler	H3	gelb	Leuchtet -> Messung aktiv
Online	gelb	leuchtet -> i.O.	H2	gelb	optional
Power	grün	leuchtet -> i.O.	H1	gelb	optional

Tab. 7 Beschreibung Anzeigeelemente

SESKION

5.4 Betriebsarten

-<u>Ö</u>-

In jeder Betriebsart ist die externe Spannungsversorgung anzuschließen. Geräte vor V 2.0 konnten mit USB-Spannungsversorgung betrieben werden, dies ist nicht mehr möglich.

5.4.1 ECU-Mode

Im "ECU-Mode" simuliert der Simulyzer die ECU und versorgt den Sensor mit Spannung. Die Datenkommunikation zwischen der simulierten ECU und dem Sensor wird dargestellt und aufgezeichnet.

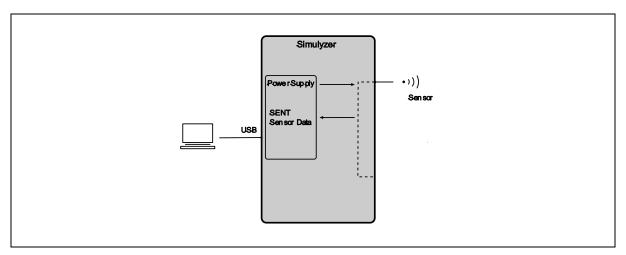


Abb. 7 ECU-Mode

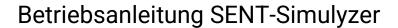



Abb. 8 Verdrahtung ECU-Mode

5.4.2 Sensor-Mode

Im "Sensor-Mode" simuliert der Simulyzer einen Sensor durch Generieren entsprechender Daten. Die Datenkommunikation zwischen der ECU und dem simulierten Sensor wird dargestellt und aufgezeichnet.

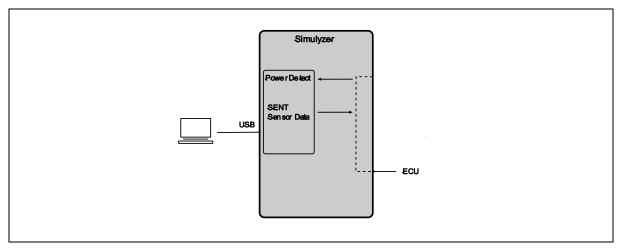


Abb. 9 Sensor-Mode

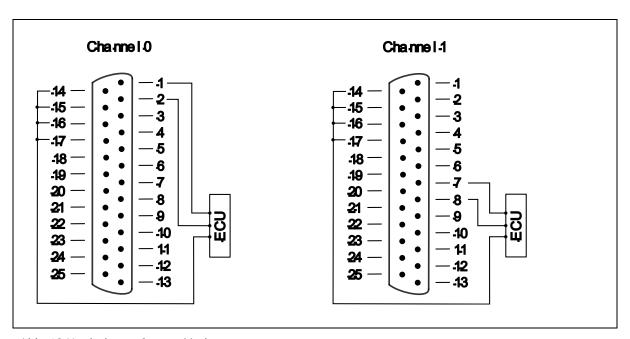


Abb. 10 Verdrahtung Sensor-Mode

5.4.3 Passiv-Mode

Im "Passiv-Mode" wird die Datenkommunikation zwischen der ECU und einem Sensor dargestellt und aufgezeichnet.

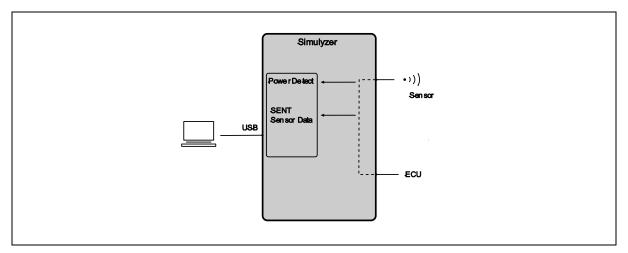


Abb. 11 Passiv-Mode

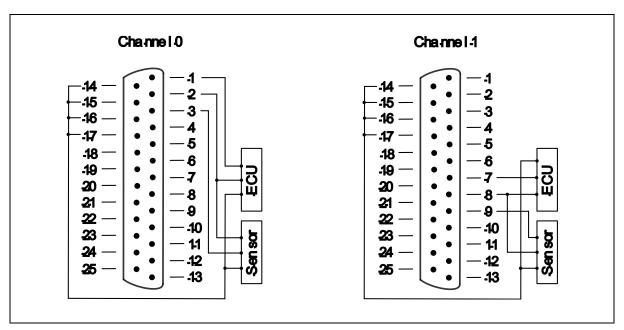


Abb. 12 Verdrahtung Passiv-Mode

6 Technische Daten

6.1 Produkt

ACHTUNG

Das Anlegen von externen Spannungen größer der hier angegebenen Maximalwerte kann den Simulyzer zerstören!

Daten	Wert
Allgemein	e Daten
Abmessungen	165 x 105 x 60 mm
Gehäuse-Material	Aluminium
Gewicht	1,1 kg
Betriebstemperatur-Bereich	0 °C 40 °C
Beschleunigung	Max. 3 g
Relative Luftfeuchtigkeit	Max. 85 % nicht kondensierend
Elektrisch	e Daten
Stromaufnahme	Max. 1 A
Versorgungsspannung für die externen Sensoren im ECU-Mode	0 V 20 V

Tab. 8 Technische Daten - Produkt

6.2 Umgebungsbedingungen

Der SENT-Simulyzer ist einzig für den Einsatz unter Laborbedingungen geeignet.

7 Messgenauigkeiten

Testbedingung: Umgebungstemperatur 20 °C bis 26 °C

Zeitbasis

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der Zeitbasis	Δf/f	±30	±50	ppm	-
Alterung der Zeitbasis	$\Delta f/f_A$	±5		ppm/Jahr	-
Temperaturdrift der Zeitbasis	$\Delta f/f_T$	±0.3	±0.7	ppm/°C	-

Messungen der Versorgungs-/ Datenspannungen (0 V ... 20 V)

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der gemessenen SENT-Spannung	U _{mea}	±0.8	±1.0	% vom SkEw. 20 V	Im Bereich 3 V 19 V
Alterung der gemessenen SENT-Spannungen	$U_{\text{A-mea}}$		±0.1	%/Jahr	Im Bereich 3 V 19 V
Auflösung der gemessenen Spannungen		10 19,53		Bit mV/LSB	01023

Erzeugung der Versorgungs-/ Datenspannungen (0 V... 20 V)

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der erzeugten Spannung	U _{mea}	±0.8	±1.0	% von SkEw. 20V	Im Bereich 3 V 19 V
Alterung der erzeugten Spannungen	U _{A-mea}		±0.1	% von SkEw. 20V / Jahr	Im Bereich 3 V 19 V
Auflösung der erzeugten Spannungen		8 78,43		Bit mV/LSB	0 255

Messungen der Ströme (0 mA ... 100 mA)

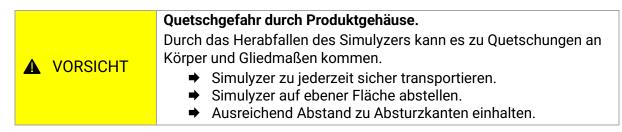
Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit des gemessenen Versorgungsstroms	I _{mea}	±0.30	±0.32	% von SkEw. 100 mA	Im Bereich 1 mA 50 mA
	I _{mea}	±0.55	±0.60	% von SkEw. 100 mA	Im Bereich 1 mA 93 mA
Alterung des gemessenen Versorgungsstroms	I _{A-mea}		±0.1	% von SkEw. / Jahr	Im Bereich 1 mA 93 mA
Auflösung des gemessenen Versorgungsstroms		10 97,8		Bit μΑ/LSB	0 1023

Erzeugung der Ströme (0 mA ...100 mA)

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der erzeugten Spannung	I _{mea}	±0.70	±0.80	% von SkEw. 100mA	Im Bereich 1 mA 93 mA
Alterung der erzeugten Spannungen	I _{A-mea}		±0.1	% von SkEw. 100mA / Jahr	Im Bereich 1 mA 93 mA
Auflösung der erzeugten Spannungen		8 392,2		Bit μΑ/LSB	0 255

Messungen der 4x Analogeingänge (-10 V ... +10 V, 100k Ohm, 250k Samples/s)

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der gemessenen Spannung	U _{mea}	±0.8	±1.0	% von SkEw. 20V	
Alterung der gemessenen Spannung	U _{A-mea}		±0.05	%/Jahr	
Auflösung der gemessenen Spannung		12 4,88		Bit mV/LSB	0 4095


Erzeugung der analog Ausgangsspannung (0 V ... +5 V)

Bewertung	Symbol	Тур	Max	Einheit	Bemerkung
Genauigkeit der erzeugten Spannung	U _{mea}	±0.8	±1.0	% von SkEw. 5 V	
Alterung der erzeugten Spannung	U _{A-mea}		±0.05	%/Jahr	
Auflösung der erzeugten Spannung		12 1,22		Bit mV/LSB	0 4095

Tab. 9 Messgenauigkeiten

8 Transport und Lagerung

8.1 Transport

Der Simulyzer ist vor Stößen und gegen Stürze gesichert zu transportieren.

8.2 Lagerung

Der Simulyzer ist trocken zu lagern.

9 Installation und Inbetriebnahme

9.1 Installation

Platzieren Sie den Simulyzer auf einer ebenen Fläche mit ausreichend Abstand zu Absturzkanten.

9.2 Inbetriebnahme

Quetschgefahr durch Produktgehäuse.

Durch das Herabfallen des Simulyzers kann es zu Quetschungen an Körper und Gliedmaßen kommen.

- ⇒ Simulyzer auf ebener Fläche abstellen.
- → Ausreichend Abstand zu Absturzkanten einhalten.

ACHTUNG

Es sind die technischen Daten in Kap. 6 einzuhalten.

12 Hilfe bei Störungen

Einige mögliche Störungen können eigenständig mit folgender Tabelle behoben werden.

Störung	Ursache	Abhilfe
Keine Statusanzeige leuchtet.	Externe Stromversorgung nicht angeschlossen oder Sicherung defekt.	Stromversorgung prüfen, bei gesprungener Sicherung Simulyzer einschicken.
Statusanzeige 1 Online - Status: aus Power - Status: leuchtet	Probleme mit dem FPGA.	Gerät einschicken.
Statusanzeige 1 Online - Status: leuchtet Power - Status: leuchtet -> in der Software wird der Offline Modus angezeigt.	Falsche Software heruntergeladen oder geöffnet.	Richtige Software von Website downloaden oder öffnen.
Statusanzeige 1 Online - Status: leuchtet Power - Status: leuchtet -> Gerät wird nicht erkannt.	Treiber nicht installiert.	Geräte Manager von Windows öffnen und Treiber installieren.

Tab. 10 Störungssuche und Behebung

Sollten die oben aufgeführten Maßnahmen die Störung nicht beheben, ist Seskion zu kontaktieren:

Tel.: +49 (0) 7 11 / 99 05 814 E-Mail: support@seskion.de

SESKION

Betriebsanleitung SENT-Simulyzer

13 Entsorgung

Die Entsorgung einzelner Komponenten kann unter Berücksichtigung der jeweils gültigen nationalen Vorschriften im normalen Wertstoffprozess erfolgen.

13.1 Recycling

Durch den hohen Metallanteil können die Produkte überwiegend stofflich wiederverwertet werden. Um eine optimale Metallrückgewinnung zu erreichen, ist eine Demontage in einzelne Baugruppen erforderlich. Metalle, die in den elektrischen und elektronischen Baugruppen enthalten sind, können mittels spezieller Trennverfahren ebenfalls zurückgewonnen werden.

13.2 Wesentliche Bestandteile

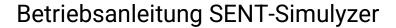
Im Wesentlichen besteht der Simulyzer aus folgenden Bestandteilen:

- Stahl, Edelstahl, Aluminium, Kupfer, Messing
- Kunststoffe, Isolier- und Verbundstoffe
- Elektronische Bauteile

Kunststoffteile der Produkte können Flammschutzmittel enthalten. Kunststoffteile sind gemäß EN ISO 1043-1:2011 + A1:2016 gekennzeichnet und nach den jeweils gültigen gesetzlichen Bestimmungen gegebenenfalls getrennt zu verwerten oder zu entsorgen.

13.3 Verpackung

Seskion Verpackungsmaterialien enthalten keine Problemstoffe und können problemlos verwertet werden.


Als Verpackungsmaterialien kommen zum Einsatz:

- Pappe
- Styropor
- Luftpolsterfolie
- Kunststoffverpackung

13.4 Entsorgung durch den Hersteller

Die von Seskion hergestellten Produkte können zur Entsorgung an Seskion zurückgegeben werden. Die Produkte sind in einer geeigneten Verpackung frei Haus an folgende Adresse zu liefern:

Seskion GmbH Karlsruherstraße 11/1 70771 Leinfelden-Echterdingen

14 Anhang

14.1 Service-Adresse

Seskion GmbH Karlsruherstraße 11/1 70771 Leinfelden-Echterdingen

E-Mail: info@seskion.de

Telefon: +49 (0) 7 11 / 99 05 814

14.2 Ersatz- und Verschleißteile

Der Simulyzer besitzt keine Ersatz- und Verschleißteile.

14.3 Konformitätserklärung

Die Konformitätserklärung des Simulyzers ist abrufbar unter:

https://www.seskion.de/wp-content/uploads/2023/10/CE_Konform_SENT-Simulyzer.pdf